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Resumo

O método de Nelson-Oppen [7] permite a combinação modular de procedimentos de satisfação de

fórmulas sem quantificadores em teorias de primeira ordem num procedimento de satisfação de fórmulas

sem quantificadores para a união das teorias. Este método, no entanto, requer que as teorias a unir

tenham assinaturas disjuntas e que sejam estavelmente infinitas. Dada a importância do método, várias

propostas com vista à extensão do método para outras classes de teorias foram feitas. Recentemente,

duas extensões do método de Nelson-Oppen foram feitas, substituindo o requisito de que as teorias a

unir tenham de ser estavelmente infinitas: em [14] é requerido que todas menos uma teoria sejam shiny,

e em [9] é necessário que, quando se combinam duas teorias, uma delas seja polite. As relações entre

teorias shiny e teorias polite é analisada em [9]. Mais tarde, uma noção mais forte de teorias polite foi

proposta [6], de modo a superar um pormenor técnico na demonstração da correcção do método de

Nelson-Oppen em [9]. Nesta tese, descrevemos o método original de Nelson e Oppen, assim como as

suas extensões a teorias shiny, polite e fortemente polite. Respondendo a uma questão deixada em

aberto em [6], analisamos as relações entre teorias shiny e fortemente polite. Mostramos que uma teo-

ria shiny com o problema de satisfação de fórmulas sem quantificadores decidı́vel é fortemente polite e

provamos que sob dois conjuntos de hipóteses, uma teoria fortemente polite é shiny.

Palavras-chave: combinação de procedimentos de satisfação, método de Nelson-Oppen,

teorias polite, teorias fortemente polite, teorias shiny
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Abstract

The Nelson-Oppen method [7] allows the modular combination of quantifier-free satisfiability procedures

of first-order theories into a quantifier-free satisfiability procedure for the union of the theories. However,

this method requires the theories to have disjoint signatures and to be stably infinite. Due to the im-

portance of the result, several attempts to extend the method to different and wider classes of theories

were made. Recently, two different extensions of the Nelson-Oppen method were proposed, where the

stably infinite requirement was replaced by another condition: in [14] it was required that all but one of

the theories are shiny, and in [9] it was required that, when combining two theories, one of them is polite.

The relationship between shiny and polite theories was analyzed in [9]. Later, a stronger notion of polite

theory was proposed, see [6], in order to overcome a subtle issue with the proof of the Nelson-Oppen

method in [9]. In this thesis, we describe the original Nelson-Oppen method, as well as its extensions

to shiny, polite and strongly polite theories. Answering an open question from [6], we also analyze the

relationship between shiny and strongly polite theories in the one-sorted case. We show that a shiny

theory with a decidable quantifier-free satisfiability problem is strongly polite and provide two different

sets of sufficient conditions for a strongly polite theory to be shiny.

Keywords: combination of satisfiability procedures, Nelson-Oppen method, polite theories,

strongly polite theories, shiny theories
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1 – Introduction

The problem of modularly combining satisfiability procedures of two theories into a satisfiability proce-

dure for their union is of great interest in the area of automated reasoning: for instance, verification

systems such as CVC4 [2] and SMTInterpol [3] rely on such a combination procedure.

The first and most well-known method for the combination of satisfiability procedures is due to Nelson

and Oppen, [7]. In this seminal paper, the authors provide a combination method to decide the satisfia-

bility of quantifier-free formulas in the union of two theories, provided that both theories have their own

procedure for deciding the satisfiability problem of quantifier-free formulas. After a correction, see [8],

the two main restrictions of the Nelson-Oppen method are:

• the theories T1 and T2 are stably infinite,

• the signatures of T1 and T2 are disjoint.

Concerned about the fact that many theories of interest, such as those admitting only finite models,

are not stably infinite, Tinelli and Zarba, in [14], showed that the Nelson-Oppen combination procedure

still applies when the stable infiniteness condition is replaced by the requirement that all but one of the

theories is shiny. However, a shiny theory must be equipped with a particular function called mincard,

which is inherently hard to compute. The authors also provide a combination theorem for theories that

only admit finite models. They also study the mincard function in terms of computability and complexity,

being able to provide sufficient conditions for it to be computable as well as proving that computing the

mincard function for the equality theory is NP-hard.

In order to overcome the problem of computing the mincard function and of the shortage of shiny

theories, Ranise, Ringeissen and Zarba proposed an alternative requirement, politeness, in [9]. A polite

theory has to be equipped with a witness function, which was thought to be easier to compute than the

mincard function. They show that given a polite theory and an arbitrary one, the Nelson-Oppen combina-

tion procedure is still valid when the signatures are disjoint and both theories have their own procedure

for deciding the satisfiability problem of quantifier-free formulas. The authors also investigate the rela-

tionship between polite and shiny theories, proving that shiny theories are polite and that under rather

weak assumptions, the converse also holds. Some time later, in [6], Jovanović and Barrett reported that

the politeness notion provided in [9] allowed, after all, witness functions that are not sufficiently strong to

prove the combination theorem. In order to clarify the proof, they provide a seemingly stronger definition

of polite theories, in the sequel called strongly polite theories, equipped with a strong witness function, s-

1



witness, that allowed to prove the combination theorem. However, the authors left open the relationship

between the two notions of politeness and between strong politeness and shininess.

In this thesis, we strive to make a thorough and detailed presentation of the described results in

a self-contained way, using a uniform notation. Furthermore, we present new results concerning the

relation between the stronger politeness notion and shininess. This leads to a newly found relation

between the notions of politeness and strong politeness.

1.1 Organization

This thesis is organized as follows: in Chapter 2 we introduce the notation used in the document; in

Chapter 3 we motivate and prove the correctness of the Nelson-Oppen method for stably infinite theo-

ries; in Chapter 4 we present the Nelson-Oppen method for the combination of theories with only finite

models. We also define shiny theories and present the Nelson-Oppen method for the combination of an

arbitrary theory and a shiny theory, and provide conditions on the computability of the mincard function,

as well as analyze its theoretical complexity. In Chapter 5, we introduce the notion of polite and strongly

polite theories, proving the combination theorem for an arbitrary theory and a strongly polite theory. In

Chapter 6, we investigate the relationship between shiny, polite and strongly polite theories. Finally, in

Chapter 7, we conclude this thesis and suggest directions for further research.
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2 – Notation

In this section we define concepts and fix notation that will be used across the document. For this, we

mainly follow [10] for the notation concerning first order logic and [14] for concepts specific to the theory

combination area.

2.1 Syntax

A signature is a tuple Σ = 〈F, P 〉 where F is the set of function symbols and P is the set of predicate

symbols. We use ∼= to denote the equality logical symbol and assume it is a logical symbol and not a

predicate symbol in P . Furthermore, we assume set once and for all the denumerable set of variables

X. We inductively define the set of Σ-terms, TΣ as x ∈ TΣ whenever x ∈ X and f(t1, . . . , tn) ∈ TΣ

whenever t1, . . . , tn ∈ TΣ and f ∈ F . A Σ-atom is either p(t1, . . . , tn) for t1, . . . , tn ∈ TΣ and p ∈ P or

s ∼= t where s, t are Σ-terms. A Σ-formula is inductively defined as usual over Σ-atoms and Σ-terms

using the connectives ∧,∨,¬,→ or the quantifiers ∀ and ∃. We denote by QF(Σ) the set of Σ-formulas

with no occurrences of quantifiers, by vars(ϕ) the set of variables occurring in ϕ and by fvars(ϕ) the set

of free variables of ϕ. We say that a Σ-formula is a Σ-sentence if it has no free variables. In the sequel,

when there is no ambiguity, we will omit the reference to the signature when referring to atoms, terms,

formulas and sentences.

Definition 2.1 (Arrangement formula). Given a finite set of variables Y , and an equivalence relation

E ⊆ Y 2 the formula ∧
(x,y)∈E

(x ∼= y) ∧
∧

(x,y)∈Y 2\E

¬(x ∼= y)

is the arrangement formula induced by E over Y , denoted by δYE . In the sequel, we will simply denote

δYE by δE if there is no confusion to which variable set the formula refers to.

In the sequel we will need to certify that a given theory only has models with higher cardinality than

some integer. For this, consider the following family of formulas.

Definition 2.2 (γ-formulas). Given a positive integer k, we denote by γk the formula

k∧
i,j=1
i 6=j

wi � wj

3



where w1, . . . , wk are variables.

2.2 Semantics

Given a signature Σ, a Σ-interpretation A is a tuple 〈D, F , P 〉 where D is the domain of A, F is a

map that for each nonnegative integer n, interprets each function symbol f ∈ F of arity n as a function

fF : Dn → D and P is a map that for each positive integer n, interprets each predicate symbol p ∈ P of

arity n as a subset pP of Dn. We denote by dom(A) the domain of an interpretation A. An assignment

ρ over an interpretation A is a map ρ : X → dom(A) from the variable set to the domain of A.

Given a Σ-interpretation A, an assignment ρ over A and a Σ-term t, we denote by JtKA ρ the inter-

pretation of t under A and ρ. Similarly, we denote by JϕKA ρ the truth value of the formula ϕ under the

interpretation A and assignment ρ. Furthermore, given a set Γ of formulas, we denote by JΓKA ρ the set

{JϕKA ρ : ϕ ∈ Γ}. The generalization for a set of terms is made analogously.

A formula ϕ is satisfiable if it is true under some interpretation and assignment over that interpreta-

tion, and unsatisfiable otherwise.

Given a set of variables Y we say that two assignments σ, ρ over an interpretationA are Y -equivalent,

σ ≡Y ρ, when σ(x) = ρ(x) for all x ∈ X \ Y .

We also say that an interpretation is finite (infinite) when its domain is finite (infinite).

We define the reduct along a signature Σ′ ⊆ Σ of an interpretation structure A over signature Σ,

denoted byA|Σ′ , as the interpretation with the same domain asA, but only containing the interpretations

of function and predicate symbols of Σ′.

2.3 Theories

Given a signature Σ, a Σ-theory is a set of Σ-sentences and given a Σ-theory T , a T -model is a Σ-

interpretation that satisfies all sentences of T . We say that a formula ϕ is T -satisfiable when there is a

T -model that satisfies it and say that two formulas are T -equivalent if they are interpreted to the same

truth value in every T -model.

Given a Σ1-theory T1 and a Σ2-theory T2, their union, T1 ⊕ T2, is a Σ1 ∪ Σ2-theory defined by the

union of the Σ1-sentences of T1 with the Σ2-sentences of T2.

We say that a Σ-theory T has a decidable quantifier-free satisfiability problem when there is an

algorithm SatT : QF(Σ)→ {0, 1} behaves as follows:

SatT = λϕ.

1 if ϕ is T -satisfiable

0 otherwise.

4



3 – The Nelson-Oppen technique

3.1 Motivation and historical overview

In this chapter we will introduce the Nelson-Oppen method in its first version, proposed by Nelson and

Oppen in 1979, [7]. At that time, the authors realized that program verifiers, symbolic evaluators and

“high level” program manipulation systems could make the programming process more automatic and

would be able to formally verify assertions about the programs. However, at that time, these program

verifiers and manipulators highly depended on theorem provers that were not efficient or could not even

deal with most of the cases presented. An example where a new method was required is the following:

a program manipulator system finds important to change (for compiling optimization) the order in which

a for loop is executed (running for i = n to 0 instead of for i = 0 to n). However, in order to verify this

transformation, the program manipulator needs to call a theorem prover that proves that what is in fact

done inside the loop can be executed both ways with the same effect. Suppose that inside the loop only

the instruction a[i] = f(i) is made, where a is an array and f some function not involving a. The theorem

prover had to verify if

store(store(a, i, f(i)), i+ 1, f(i+ 1)) = store(store(a, i+ 1, f(i+ 1)), i, f(i)),

where store(a, i, e) denotes array a where in position i, element e is placed. However, observe that the

theorem prover needs to be able to reason both about the theory of arrays (due to the store function), the

theory of integers (due to the presence of the addition symbol) and the theory of uninterpreted functions

(due to the function f ). This type of reasoning about assertions over multiple theories was not well

studied and was made on a case by case basis such as the work of Suzuki and Jefferson [11] on the

theory of arrays and Presburger arithmetic.

With this is mind, the goal of the authors was to devise a method to modularly combine satisfiability

procedures of two generic theories into a satisfiability procedure for the union of the theories. Formally,

given two theories T1 and T2 over disjoint signatures Σ1 and Σ2 with a decidable quantifier-free sat-

isfiability decision procedure, we want to design a quantifier-free satisfiability procedure for the theory

T1 ⊕ T2. In the sequel, we will see that additional conditions will have to be imposed on the theories in

order to be possible to construct such procedure.
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3.2 The Nelson-Oppen technique

Let T = T1 ⊕ T2 be a theory over the signature Σ = Σ1 ∪ Σ2, such that Σ1 ∩ Σ2 = ∅, and consider

a quantifier-free Σ-formula ϕ. If it is the case that ϕ =
∧n
i=1 ϕi, with φ1 =

∧k
i=1 ϕi ∈ QF(Σ1) and

φ2 =
∧n
i=k+1 ϕi ∈ QF(Σ2) such that vars(φ1)∩vars(φ2) = ∅, then a simple procedure could be constructed

to decide the satisfiability of ϕ in T : we simply have to apply the decision procedure SatT1 to φ1 and

SatT2 to φ2. Since there is no variable sharing between the formulas this procedure would decide if ϕ

is satisfiable in T iff φ1 is T1-satisfiable and φ2 is T2-satisfiable. However, this is not always the case –

it may happen that the formulas of the different signatures share variables, or even that there are terms

containing symbols from both signatures. If this is the case, a purification procedure must first be applied

to the formula.

Definition 3.1 (Pure term, alien term, pure literal, purification procedure). Given disjoint signatures Σ1

and Σ2, and a term t in Σ = Σ1 ∪ Σ2, we say that t is pure when it is a term over Σ1 or over Σ2. A term

is said to be alien when it is not pure. A literal in Σ is pure when it is of the form p(t1, . . . , tn) and there is

an i in {1, 2} such that t1, . . . , tn are pure terms from Σi and p is a predicate symbol in Σi. A purification

procedure is an algorithm that given a conjunction of literals returns an equivalent conjunction of pure

literals. This is done by replacing each alien term by a fresh variable and adding an additional equality

between the replaced term and the fresh variable. This procedure is recursively applied until all terms

are pure.

The following example illustrates this method.

Example 3.1. Consider the following literal in Σ1 ∪ Σ2

p1(f1(x1, c2), g2(x2), f ′1(x1), c′2),

where p1, f1, f
′
1 belong to Σ1 and c2, g2, c

′
2 belong to Σ2. The first alien term found is c2 in f1(x1, c2). We

replace c2 by y1 and add the equality c2 ∼= y1 obtaining

p1(f1(x1, y1), g2(x2), f ′1(x1), c′2) ∧ c2 ∼= y1.

Continuing the procedure in a similar fashion, we obtain the equivalent conjunction of pure terms

p1(f1(x1, y1), y2, f
′
1(x1), y3) ∧ c2 ∼= y1 ∧ g2(x2) ∼= y2 ∧ y3

∼= c′2.

We now show that the purification procedure preserves satisfiability of the formula in the theory.

Proposition 3.2. Let ϕ be a conjunction of literals over Σ = Σ1 ∪Σ2 and T a theory over Σ. Then, after

the purification procedure we obtain the formulas ϕi over Σi for i ∈ {1, 2}, such that

ϕ is satisfiable in T iff ϕ1 ∧ ϕ2 is satisfiable in T .

Proof. (→) Let A be a T -model and ρ an assignment over A such that A ρ  ϕ.

6



Let ρ′ be an assignment such that

• ρ′(x) = ρ(x), for x ∈ vars(ϕ);

• ρ′(y) = JtKA ρ, for each variable y and term t such that y is not in vars(ϕ), y is in vars(ϕ1 ∧ ϕ2) and

the equality between y and t was introduced in the purification procedure.

Then A ρ′  ϕ1 ∧ ϕ2.

(←) In fact, if we have a T -model A and an assignment ρ over A such that A ρ  ϕ1 ∧ ϕ2 then

A ρ  ϕ.

The following proposition provides a necessary condition for a formula to be satisfiable in the union

of two theories, in terms of their subformulas being satisfiable in their original theories.

Proposition 3.3. Let ϕ1 ∧ ϕ2 a formula obtained after a purification procedure for ϕ. If ϕ1 ∧ ϕ2 is

satisfiable in T = T1 ⊕ T2 then there exists E ⊆ Y 2, where Y is vars(ϕ1) ∩ vars(ϕ2), such that

• ϕ1 ∧ δYE is T1-satisfiable;

• ϕ2 ∧ δYE is T2-satisfiable.

Proof. Let A be a T -interpretation and ρ an assignment over A such that A ρ  ϕ1 ∧ ϕ2. Then, the

arrangement formula δYEρ induced by Eρ = {(x, y) : x, y ∈ Y and ρ(x) = ρ(y)} is satisfied by A and ρ, by

construction. Therefore, A|Σ1
is a T1 model of ϕ1 ∧ δYEρ and A|Σ2

is a T2 model of ϕ2 ∧ δYEρ .

Unfortunately, an additional requirement is needed to prove the converse of the previous proposition

to ultimately prove the correctness of the combination procedure. As we will show in Example 3.2,

problems might arise when one of the theories only admits finite models.

Definition 3.4 (Stable infiniteness). We say that a theory T is stably infinite if for every T -satisfiable

quantifier-free formula ϕ there exists an infinite T -model of ϕ.

Several theories have been proved to be stably infinite. This is the case for the theory of equality, the

theory of integer arithmetic or the theory of arrays. On the other hand, it is worthwhile mentioning that

a theory with an infinite model does not directly imply it is stably infinite. Consider the case of a theory

defined by ∀x∀y∀z p(z)→ (x ∼= y). The theory admits infinite models, however the formula p(z) is also

satisfiable but only in the trivial models of the theory.

Proposition 3.5. Let Σ = Σ1 ∪ Σ2 such that Σ1 ∩ Σ2 = ∅, and let Ti be stably infinite theories. If there

exists a relation E ⊆ Y 2, where Y is vars(ϕ1) ∩ vars(ϕ2) such that

• ϕ1 ∧ δYE is T1-satisfiable;

• ϕ2 ∧ δYE is T2-satisfiable,

then ϕ1 ∧ ϕ2 is T1 ⊕ T2-satisfiable.

Proof. Since ϕ1 ∧ δYE is T1-satisfiable and ϕ2 ∧ δYE is T2-satisfiable, we have that

7



• there exists an interpretation structure A1 over Σ1 such that A1  T1 and an assignment ρ1 over

A1 such that A1 ρ1  ϕ1 ∧ δYE ;

• there exists an interpretation structure A2 over Σ2 such that A2  T2 and an assignment ρ2 over

A2 such that A2 ρ2  ϕ2 ∧ δYE .

Since the theories are stably infinite, we can assume without loss of generality that A1 and A2 are

infinite models. Hence

A1  ∃(ϕ1 ∧ δYE ) and A2  ∃(ϕ2 ∧ δYE )

and so

A1  T1 ∪ {∃(ϕ1 ∧ δYE )} and A2  T2 ∪ {∃(ϕ2 ∧ δYE )}.

We conclude that the theories

T ′1 = T1 ∪ {∃(ϕ1 ∧ δYE )} and T ′2 = T2 ∪ {∃(ϕ2 ∧ δYE )}

have infinite models. By the upwards Löwenheim-Skolem theorem, there is a cardinal α high enough so

that there exist models of T ′1 and T ′2 with cardinality α. Hence, we have

• a T ′1 -model A′1; and

• a T ′2 -model A′2;

such that A′1 and A′2 have the same cardinality.

Let ρ′1 and ρ′2 be assignments such that

A′1 ρ′1  ϕ1 ∧ δYE and A′2 ρ′2  ϕ2 ∧ δYE .

Considering Y as vars(ϕ1)∩vars(ϕ2), let η : JY KA
′
1 ρ

′
1 → JY KA

′
2 ρ

′
2 such that η(ρ′1(x)) = ρ′2(x) for all x ∈ Y .

This map is well defined since both assignments satisfy the same equalities and inequalities of δYE and

is one-to-one. Furthermore, since the models A′1 and A′2 have the same cardinality, we can extend the

bijection η to their domains.

Based on bijection η, we now build an interpretation structure A extending A′1 and A′2 to signature Σ,

A = 〈D, F , P 〉. Define D as the domain of A′1, the denotations of function and predicate symbols from

Σ1 are made as in A′1 and the denotations of the function and predicate symbols from Σ2 are as in A′2,

but viewing the elements of D as elements in the domain of A′2 via the bijection η. With this construction

we obtain directly that

A|Σi is A′i modulo isomorphism

which concludes that A is a model of T ′1 and T ′2 , and furthermore of T1 ⊕T2. Moreover, defining σ as an

assignment over A such that σ(x) = ρ′1(x) we have that

A σ  ϕ1 ∧ δYE and A σ  ϕ2 ∧ δYE

8



implying that

A σ  ϕ1 ∧ ϕ2,

and concluding that ϕ1 ∧ ϕ2 is satisfiable in T1 ⊕ T2.

Observation: Notice that in the proof of Proposition 3.5 we have proved the following theorem:

Theorem 3.6. Let Ti be Σi-theories for i = 1, 2 such that Σ1∩Σ2 = ∅. Denote by Σ the signature Σ1∪Σ2

and by T the theory T1 ⊕ T2 and let Γi be a set of Σi literals for i = 1, 2 and V = vars(Γ1) ∩ vars(Γ2). If

there exists

• a T1-model A and assignment ρ such that A ρ  Γ1 ∧ δVE ;

• a T2-model B and assignment µ such that B µ  Γ2 ∧ δVE ;

• and |dom(B)| = |dom(A)|,

then there exists a T1 ⊕ T2-model C and assignment σ such that C σ  Γ1 ∧ Γ2 ∧ δVE and C|Σ1
= A and

C|Σ2
= B modulo isomorphism.

We are now able to present one version of the original Nelson-Oppen algorithm for the decision of

satisfiability of quantifier-free formulas in the union of stably infinite theories.

Algorithm 1 — Nelson-Oppen algorithm
Input: ϕ, where ϕ is a quantifier-free formula over Σ
Output: SatT (ϕ)

1: find ϕi over Σi such that ϕ is equivalent to ϕ1 ∧ ϕ2 by purifying ϕ
2: if SatT1(ϕ1) == 0 or SatT2(ϕ2) == 0
3: then return 0
4: end if
5: if there exists a relation E ⊆ Y 2, where Y = vars(ϕ1) ∩ vars(ϕ2) such that SatT1(ϕ1 ∧ δYE ) == 1 and

SatT2(ϕ2 ∧ δYE ) == 1
6: then return 1
7: else return 0
8: end if

Proposition 3.7. Let Ti be stably infinite Σi-theory for i = 1, 2 such that Σ1 ∩ Σ2 = ∅ and with a

decidable quantifier-free satisfiability problem. Then Algorithm 1 is a decidable satisfiability procedure

for quantifier-free formulas of T1 ⊕ T2.

Proof. We start by proving that Algorithm 1 always terminates when given a quantifier-free formula in

Σ. The purification procedure always terminates since the formula is finite. Step 2 of the algorithm is

computable and always terminates since the decision procedures SatTi are computable by hypothesis.

The fifth instruction of the algorithm is also computable since the set Y = vars(ϕ1)∩ vars(ϕ2) is finite and

therefore there are a finite number of relations E ⊆ Y 2.

Considering the correctness of the algorithm, we have that the first instruction preserves satisfiability

of the formula (by Proposition 3.2). Considering instruction 2, if one of the subformulas ϕ1 or ϕ2 is not

satisfiable, then their conjunction is also not satisfiable (by Proposition 3.3). Now, if the algorithm returns
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0 in line 7, this means that there is no E ⊆ Y 2 such that at least one of ϕi ∧ δYE is satisfiable. Then, we

conclude by Proposition 3.3 that ϕ1 ∧ ϕ2 is not T1 ⊕ T2 satisfiable. On the other hand, if the algorithm

returns 1 in line 6, we have by Proposition 3.5 that ϕ1 ∧ ϕ2 is T1 ⊕ T2-satisfiable.

Capitalizing on the previous results and the presented algorithm, we are now able to state the com-

bination theorem for stably infinite theories with disjoint signatures.

Theorem 3.8 ([13]). Let Ti be Σi-theory for i = 1, 2 such that Σ1 ∩ Σ2 = ∅. Let Γi be a conjunction

of Σi literals for i = 1, 2. Assume that T1 and T2 are stably infinite. Then the following statements are

equivalent:

1. Γ1 ∧ Γ2 is T1 ⊕ T2 satisfiable.

2. There exists an arrangement δVE such that Γ1 ∧ δVE is T1-satisfiable and Γ2 ∧ δVE is T2-satisfiable, for

V = vars(Γ1) ∩ vars(Γ2).

The following example shows that problems might arise when one of the theories is not stably infinite,

imposing it as a sufficient condition for this method to work.

Example 3.2. Let T1 be a theory only admitting models with cardinality at most 2 and T2 a theory

admitting models with any cardinality over a signature disjoint from the signature of T1 and denote by

T the union T1 ⊕ T2. Assume that f is a function symbol from Σ1 and g a function symbol from Σ2.

Consider the formula

ϕ := f(x) � f(y) ∧ g(x) � g(z) ∧ g(y) � g(z).

Since the terms are pure terms, using theorem 3.8 we obtain that Γ1 := f(x) � f(y) and Γ2 := g(x) �

g(z) ∧ g(y) � g(z). Since the shared variables between the two formulas is the set s = {x, y} we now

need to check the satisfiability of Γi with the arrangements over s, which are either x ∼= y or x � y.

Considering the first arrangement, we obtain that Γ1 ∧ x ∼= y = f(x) � f(y) ∧ x ∼= y is clearly not

satisfiable. Considering the second arrangement, we have that Γ1 ∧ x � y = f(x) � f(y) ∧ x � y is

T1-satisfiable and Γ2 ∧ x � y = g(x) � g(z) ∧ g(y) � g(z) ∧ x � y is T2-satisfiable. By blindly applying

theorem 3.8 we would conclude that Γ1 ∧Γ2 is satisfiable in the union of the theories. However, we have

that

T |= ϕ→ (x � y ∧ x � z ∧ y � z)

which makes ϕ unsatisfiable in the union of the theories, since as T1, the union only admits models with

cardinality at most 2. The combination theorem fails in this case since T1 is not stably infinite.

The previous example, on the one hand shows that the stable infiniteness property is needed, but on

the other hand it provides a hint on how the procedure could be generalized to theories with only finite

models. Assuming that there exists a theory specific procedure that given a satisfiable formula is able

to compute the cardinality of a model for it, checking if cardinality constraints on the theory are violated

would be quite simple. This is a development that will be further explored in the following chapter and is

due to Tinelli and Zarba, in [14].
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3.3 Summary of the chapter

In this chapter we began by motivating the seminal work by Nelson and Oppen in 1979 when they first

started to combine satisfiability procedures for different theories into one procedure for the union of the

theories. We then present the results that prove the correctness of the combination procedure for stably

infinite theories. These results follow the work and can be found (possibly with different notation than

the one used in the present document) in Nelson and Oppen [7], Oppen [8], Tinelli and Harandi [12]

and Tinelli and Ringeissen [13]. Furthermore, we presented an example showing that the stably infinite

restriction on the theories is indeed required for this combination procedure to work.
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4 – Shiny theories

Despite the Nelson-Oppen method being a huge step forward in improving theorem provers, as seen in

the end of the previous chapter, the original method fails when one of the theories is not stably infinite.

Two problems emerged at this time: on one hand, people wanted to know for which classes of theories

similar combination methods existed; on the other hand, a more practical necessity emerged since many

theories of interest were not stably infinite.

In this chapter, following the work by Tinelli and Zarba, in [14], we detail a new combination procedure

that deals with theories that have only finite models. Moreover, we also provide another combination

method for the union of an arbitrary theory with a shiny theory. For this, consider the following definitions.

Definition 4.1 (Stable finiteness). We say that a theory T is stably finite if for every T -satisfiable

quantifier-free formula ϕ there exists a finite T -model of ϕ.

Definition 4.2 (mincardT function). Given a theory T over a signature Σ, let mincardT be the function

from QF(Σ) to N such that

mincardT = λϕ.min{k : A is a T -model, A  ϕ and |dom(A)| = k}

if ϕ is T -satisfiable, otherwise mincardT (ϕ) is undefined.

So, when ϕ is T -satisfiable the function mincardT returns the cardinality of the smallest T -model of ϕ.

When there is no ambiguity as to which theory the function refers to we will simply write mincard.

In this chapter, unless mentioned otherwise, when a Nelson-Oppen combination algorithm is pre-

sented we assume that upon input, the purification procedure is promptly executed and are only inter-

ested in the verification phase of the purified input. Also, we assume the algorithm receives with the input

an arrangement formula over the shared variables of the two purified subformulas of the input, δE . This

means that the real decision procedure will have to execute the presented algorithms for all arrangement

formulas, instead of explicitly searching for δE as in Algorithm 1.

4.1 Theories with finite models

We will now introduce a combination method for theories with finite models such as the one in [14]. Let

Σ1 and Σ2 be disjoint signatures and T1 and T2 be Σ1 and Σ2 theories, respectively. Assume for the

duration of this section that
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• T1 and T2 are stably finite;

• the mincardTi function is computable for i = 1, 2;

• T1 has only finite models;

• the quantifier-free satisfiability problem is decidable for both theories.

Consider the following algorithm for deciding the satisfiability of quantifier-free formulas in T = T1 ⊕

T2.

Algorithm 2 — first adaptation of the Nelson-Oppen algorithm
Input: Γ = Γ1 ∧ Γ2 ∧ δE , where Γ is a quantifier-free satisfiable formula over Σ
Output: SatT (Γ), where T = T1 ⊕ T2

1: N = 1
2: while true do
3: if exists i such that SatTi(Γi ∧ δE ∧ γN ) == 0 then
4: return 0
5: else if exists i such that mincardTi(Γi ∧ δE ∧ γN ) == m > N
6: then N = m
7: else return 1

We first prove this algorithm always terminates.

Proposition 4.3. Algorithm 2 terminates when given a purified quantifier-free formula Γ.

Proof. Assume, in view of an absurd that Algorithm 2 does not terminate. This implies that SatT1(Γ1 ∧

δE ∧γN ) = 1 for any increasing N which implies (by compactness) that Γ1∧ δE is satisfiable in an infinite

T1-model, contradicting the hypothesis that all T1 models are finite.

Proposition 4.4. If the purified quantifier-free formula Γ is T -satisfiable then Algorithm 2 returns 1.

Proof. LetA be a T -model satisfying Γ. SinceA is a T -model we conclude that it also is a T1-model and

hence that the cardinality of dom(A) is a finite number, κ. Since Algorithm 2 terminates by Proposition

4.3, let k1, . . . , kn be the sequence of numbers taken by N in the execution of the algorithm. We now

prove that kj ≤ κ for j = 1, . . . , n. The base case holds trivially. Now, assume that kj ≤ κ. By

construction, there is an i such that kj+1 = mincardTi(Γi ∧ δE ∧ γkj ). But since A satisfies Γi ∧ δE ∧ γkj ,

we have that kj+1 ≤ κ. Since all values taken by N are less than or equal to the cardinality of A, we

have that the procedure must return 1.

Proposition 4.5. If the Algorithm 2 returns 1 for a purified quantifier-free formula Γ then Γ is T -

satisfiable.

Proof. If k is the last value N takes before the program returns 1, then this means that for i = 1, 2 that

SatTi(Γi ∧ δE ∧ γk) == 1 and that mincardTi(Γi ∧ δE ∧ γk) == k. In other words, this means that Γi ∧ δE
is Ti-satisfiable by a Ti-model of cardinality k. Hence, we can apply Theorem 3.6, obtaining a T -model

satisfying Γ.
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4.2 Shiny theories

In this section, we analyze a combination method for the union of a shiny theory and an arbitrary theory

presented by Tinelli and Zarba, in [14]. Despite shininess being a stronger notion than stable infiniteness,

this way we are able to combine shiny theories with any first-order theory, only requiring they have disjoint

signatures.

Definition 4.6 (Smoothness). We say that a theory T is smooth if for every T -satisfiable quantifier-free

formula ϕ, T -model A satisfying ϕ and cardinal κ ≥ |dom(A)| there exists a T -model B satisfying ϕ such

that |dom(B)| = κ.

Definition 4.7 (Shininess, [14]). A theory is shiny whenever it is smooth, stably finite and its mincard

function is computable.

Several theories were proved to be shiny, such as the theory of equality, the theory of partial orders

and the theory of total orders, in [14].

The following procedure describes how to decide the satisfiability of a quantifier-free formula in the

union of a shiny theory and an arbitrary theory.

Algorithm 3 — Nelson-Oppen algorithm for T1 arbitrary and T2 shiny
Input: Γ = Γ1 ∧ Γ2 ∧ δE , where Γ is a quantifier-free satisfiable formula over Σ
Output: SatT (Γ), where T = T1 ⊕ T2

1: if SatT2(Γ2 ∧ δE) == 0
2: then return 0
3: else N = mincardT2(Γ2 ∧ δE)
4: if SatT1(Γ1 ∧ δE ∧ γN ) == 0
5: then return 0
6: else return 1

Observation: Algorithm 3 always terminates since functions SatTi and mincardT2 are computable.

Proposition 4.8. If the purified quantifier-free formula Γ is T -satisfiable then Algorithm 3 returns 1.

Proof. Let A be a T -model satisfying Γ. Then, the reduct of A along Σ2 satisfies Γ2 ∧ δE and hence,

the procedure does not enter line 2 and assigns to N the value of mincardT2(Γ2 ∧ δE). By the definition

of mincard, we have that N ≤ |dom(A)|, which implies that the reduct of A along Σ1 satisfies γN , and

hence A|Σ1 satisfies Γ1 ∧ δE ∧ γN . Therefore, the procedure does not enter line 5 and returns 1 in line

6.

Proposition 4.9. If the Algorithm 3 returns 1 for a purified quantifier-free formula Γ then Γ is T -

satisfiable.

Proof. If the algorithm returns 1, then this means that Γ2 ∧ δE is T2-satisfiable and that Γ1 ∧ δE ∧ γN
is T1-satisfiable. Therefore, let A1 be a T1-model of Γ1 ∧ δE ∧ γN and A2 be a T2-model of Γ2 ∧ δE
with cardinality N = mincardT2(Γ2 ∧ δE). By definition of γN , we have that |dom(A1)| ≥ N . Using the

smoothness of T2, we can assume that |dom(A2)| = |dom(A1)|. With this set, we can apply Theorem

3.6 obtaining a T -model satisfying Γ.
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From these results, we obtain the Nelson-Oppen combination theorem for the union of a shiny and

an arbitrary theory.

Theorem 4.10 ([14]). Let Ti be a Σi-theory for i = 1, 2 such that Σ1 ∩Σ2 = ∅. Let Γi be a conjunction of

Σi literals for i = 1, 2. Assume that T2 is shiny. Then the following statements are equivalent:

1. Γ1 ∧ Γ2 is T1 ⊕ T2 satisfiable.

2. There exists an arrangement δVE such that Γ1∧δVE ∧γκ is T1-satisfiable and Γ2∧δVE is T2-satisfiable,

for V = vars(Γ1) ∩ vars(Γ2) and κ = mincardT2(Γ2 ∧ δVE ).

We will now return to Example 3.2 from Chapter 3 and show that by using the combination method

for a shiny with an arbitrary theory we obtain a correct answer.

Example 4.1. Recall, from Example 3.2, that after purification we obtained that Γ1 := f(x) � f(y) and

Γ2 := g(x) � g(z) ∧ g(y) � g(z). In this new method, and following Algorithm 3, since the shared

variables between the two formulas is the set s = {x, y} we now need to check the satisfiability of Γ2

with the arrangements over s, which are x ∼= y and x � y.

• Considering x ∼= y, we have that Γ2 ∧ x ∼= y is T2-satisfiable. Also, we can easily deduce that its

smallest model has cardinality two. Then, we need to check whether Γ1 ∧ x ∼= y ∧ γ2 is satisfiable

in T1. This is not the case, directly from the fact that Γ1 ∧ x ∼= y is not T1-satisfiable.

• Considering x � y, we have that Γ2 ∧ x � y is T2-satisfiable. Also, we can easily deduce that its

smallest model has cardinality three. Then, we need to check whether Γ1∧x ∼= y∧γ3 is satisfiable

in T1. It is the case that Γ1 ∧ x ∼= y is T1-satisfiable, however γ3 is not T1-satisfiable since T1 only

admits models with cardinality at most two, and γ3 requires, by definition, a model of cardinality at

least three to be satisfiable.

Therefore, we conclude that ϕ is not T1 ⊕ T2-satisfiable.

4.3 Computability of the mincard function

In this section we study the computability of the mincard function and provide two different sets of condi-

tions on the underlying theory under which the mincard function is computable.

4.3.1 Universal theories

Here we show that a stably finite universal theory with a decidable quantifier-free satisfiability problem

has a computable mincard function. To prove this, we first need to introduce several notions such as

embedding and diagram.

Definition 4.11 (Embedding). Given two interpretations A and A′ over the same signature, we say that

a map h : dom(A) → dom(A′) is an embedding from A to A′, written h : A → A′, if it is injective and

satisfies
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• h(fF (d1, . . . , dn)) = fF
′
(h(d1), . . . , h(dn));

• pP (d1, . . . , dn) = pP
′
(h(d1), . . . , h(dn)),

for all function and predicate symbols from the underlying signature.

Lemma 4.12. Let h : A → A′ be an embedding and ρ be an assignment over A. Then, for every term t,

h(JtKA ρ) = JtKA
′ h◦ρ.

Proof. The proof follows by induction on the structure of the term. The base case is when t is a variable

x or a constant c. Then,

h(JxKA ρ) = h(ρ(x))

= JxKA
′ h◦ρ

or

h(JcKA ρ) = h(cF )

= cF
′

= JcKA
′ h◦ρ

If t is f(t1, . . . , tn) then we have that

h(Jf(t1, . . . , tn)KA ρ) = h(fF (Jt1KA ρ, . . . , JtnKA ρ))

= fF
′
(h(Jt1KA ρ), . . . , h(JtnKA ρ))

= fF
′
(Jt1KA

′ h◦ρ, . . . , JtnKA
′ h◦ρ)

Proposition 4.13. Let h : A → A′ be an embedding. Then, for each ϕ ∈ QF(Σ) and assignment ρ over

A,

1. A ρ  ϕ iff A′ h ◦ ρ  ϕ;

2. A ρ  ∀x1 . . . ∀xn ϕ when A′ h ◦ ρ  ∀x1 . . . ∀xn ϕ;

3. A  ∀ ϕ when A′  ∀ ϕ.

Proof. 1. The proof is done by induction on the structure of the formula ϕ. If ϕ is p(t1, . . . , tn) then

A ρ  p(t1, . . . , tn) iff pP (Jt1KA ρ, . . . , JtnKA ρ) = 1

iff pP
′
(Jt1KA

′ h◦ρ, . . . , JtnKA
′ h◦ρ) = 1, since h is an embedding

iff A′ h ◦ ρ  p(t1, . . . , tn)
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Now, consider ϕ as (¬ψ). Then,

A ρ  (¬ψ) iff A ρ 1 ψ

iff A′ h ◦ ρ 1 ψ

iff A′ h ◦ ρ  (¬ψ)

Finally, if ϕ is (ψ1 → ψ2). Then,

A ρ  (ψ1 → ψ2) iff A ρ 1 ψ1 or A ρ  ψ2

iff A′ h ◦ ρ 1 ψ1 or A′ h ◦ ρ  ψ2

iff A′ h ◦ ρ  (ψ1 → ψ2)

2. Assume that A′ h ◦ ρ  ∀x1 . . . ∀xn ϕ holds. The proof follows by induction on n that A ρ 

∀x1 . . . ∀xn ϕ. The base case holds from 1. Now, let σ be a x1-equivalent assignment to ρ. Then,

A′ h ◦ σ  ∀x2 . . . ∀xn ϕ since h ◦ ρ ≡x1 h ◦ σ and by definition of satisfiability of a universal quantifier.

By induction hypothesis we have that A σ  ∀x2 . . . ∀xn ϕ. Again, by the definition of satisfiability of a

universal quantifier we obtain A ρ  ∀x1 . . . ∀xn ϕ.

3. Is a direct consequence of 2.

Definition 4.14 (Universal formula). We say that a formula ϕ is a universal formula if it is of the form

∀x1 . . . ∀xn φ where n ≥ 0 and φ is quantifier-free.

Definition 4.15 (Universal theory). We say that a theory is universal if it is axiomatized exclusively by

universal formulas.

Lemma 4.16. Let T be a universal theory over Σ,M a T -model and A a generic interpretation. If there

exists an embedding h : A →M then A is also a model of T .

Proof. This is a direct consequence of Proposition 4.13 and the structure of the sentences in a universal

theory.

Definition 4.17 (Simple diagrams). Given a Σ-interpretation A = 〈D, F , P 〉 and an assignment ρ over

A, define Σ+ as the signature Σ enriched by a new constant symbol d̄ for each d ∈ D. The simple

diagram of A, denoted by ∆(A), is the set

{
[ϕ]x1,...,xn

¯ρ(x1),..., ¯ρ(xn)
: ϕ ∈ QF(Σ), fvars(ϕ) = {x1, . . . , xn},A ρ  ϕ

}
.

Observation: The extension of A to Σ+, denoted by Ā, such that Ā|Σ = A and Jd̄KĀΣ+ = d for all

d ∈ dom(A) satisfies ∆(A) by construction.

With these definitions and preliminary results, we are now able to prove the main proposition of the

section. For this, consider Algorithm 4.
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Algorithm 4 — mincardSat algorithm, [14]
Input: Γ, where Γ is a quantifier-free satisfiable conjunction of literals over Σ
Output: k, where k is the cardinality of the smallest T -model of Γ
Requires: access to SatT

1: k = 1
2: while true do
3: for all non-isomorphic Σ-interpretations A s.t. |dom(A)| = k do
4: if SatT (∆(A) ∧ Γ) == 1 then return k
5: end for
6: k = k + 1
7: end while

Proposition 4.18 ([14]). Let T be a stably finite universal theory with a decidable quantifier-free satisfi-

ability problem. Then, the mincardT function is computed by Algorithm 4.

Proof. Let Γ be a satisfiable conjunction of literals. Since T is stably finite, by hypothesis we have that

there exists a T -model A and an assignment ρ that satisfy Γ and such that |dom(A)| = k for some

positive integer k. By construction of ∆(A), we have that ∆(A) ∧ Γ is satisfied by Ā and ρ and that Ā

is also a T -model. We are therefore guaranteed that the procedure terminates given a quantifier-free

satisfiable conjunction of literals.

Regarding the correctness of the procedure, assume that the procedure outputs k. Then there is a

T -model B that satisfies ∆(A)∧Γ such that |dom(A)| = k. Consider now the function h : A → B defined

by h(d) = Jd̄KBΣ+ for each d in the domain of A. We show that h is an embedding:

• h is injective: let d1, d2 ∈ dom(A) be such that d1 6= d2. Then, considering ρ such that ρ(x1) = d1

and ρ(x2) = d2 we have that A ρ  ¬(x1
∼= x2), and hence ¬(d̄1

∼= d̄2) ∈ ∆(A). Therefore since B

satisfies the diagram of A, we have that B  ¬(d̄1
∼= d̄2) and so

h(d1) = Jd̄1KBΣ+ 6= Jd̄2KBΣ+ = h(d2).

• h(fF (d1, . . . , dn)) = fF
′
(h(d1), . . . , h(dn)): let ρ be such that ρ(xi) = di and ρ(x) = fF (d1, . . . , dn).

Then, A ρ  f(x1, . . . , xn) ∼= x, and hence f(d̄1, . . . , d̄n) ∼= ¯fF (d1, . . . , dn) ∈ ∆(A). Therefore,

B  f(d̄1, . . . , d̄n) ∼= ¯fF (d1, . . . , dn) and so

Jf(d̄1, . . . , d̄n)KB = J ¯fF (d1, . . . , dn)KB

fF
′
(Jd̄1KB, . . . , Jd̄nKB) = J ¯fF (d1, . . . , dn)KB

fF
′
(h(d1), . . . , h(dn)) = h(fF (d1, . . . , dn))

• pP (d1, . . . , dn) = pP
′
(h(d1), . . . , h(dn)): first consider the case in which pP (d1, . . . , dn) = 1. Con-

sidering ρ as ρ(xi) = di we have that A ρ  p(x1, . . . , xn) and so p(d̄1, . . . , d̄n) ∈ ∆(A). Therefore,
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B  p(d̄1, . . . , d̄n) and so

pP
′
(Jd̄1KB, . . . , Jd̄nKB) = 1

iff pP
′
(h(d1), . . . , h(dn)) = 1.

Now consider the case in which pP (d1, . . . , dn) = 0. Then, considering ρ as ρ(xi) = di we have

that A ρ  ¬p(x1, . . . , xn) and so ¬p(d̄1, . . . , d̄n) ∈ ∆(A). Therefore, B  ¬p(d̄1, . . . , d̄n) and so

pP
′
(Jd̄1KB, . . . , Jd̄nKB) = 0

iff pP
′
(h(d1), . . . , h(dn)) = 0.

Recalling, we have that there is a T -model B that satisfies ∆(A) ∧ Γ such that |dom(A)| = k and an

embedding h : A → B. By Lemma 4.16, considering that T ∪ ∆(A) ∪ Γ is a universal theory (since T

is universal by hypothesis and we can consider the variables of ∆(A) ∪ Γ as constants) we have that

A also satisfies T ∪ ∆(A) ∪ Γ. From this we obtain that mincard(Γ) ≤ k since |dom(A)| = k. To see

why mincard(Γ) = k, assume by contradiction that mincard(Γ) < k. Then there exists a T -model C with

cardinality q < k that satisfies Γ. But then, C also satisfies T ∪ ∆(C) ∪ Γ and so the procedure should

have stopped at the q-th iteration.

4.3.2 Other theories

In this section, we show that a stably finite theory with a rather weak “decidability” property gives also

a sufficient condition for the mincard function to be computable. The idea behind this is that, in a stably

finite theory, we are sure that a satisfiable formula will have a model with finite cardinality. In order to

find a model with the smallest possible cardinality, we enumerate finite interpretations and need to verify

whether (i) it is a model of the theory; (ii) it satisfies the formula. Since we are only considering finite

interpretations and finite formulas, step (ii) is obviously computable. However, it might not be decidable

to verify if an arbitrary finite interpretation is a model of the theory. To put it otherwise, provided that it is

decidable to check if a finite interpretation is a model of the theory at hand, then we are able to compute

the mincard function. We show this result in the following proposition.

Proposition 4.19. Let Σ be a finite signature and T a Σ-theory. Assume that given a finite Σ-interpretation

A, it is decidable to check whether A is a T -model. Then, if T is stably finite then the mincard function is

computable.

Proof. Consider the Algorithm 5 for computing the mincard function.

Regarding the termination of the algorithm, since we are considering a stably finite theory, we are

guaranteed that there exists a positive integer p such that there is a model of the theory with cardinality

p that satisfies the given formula. Furthermore, we can create all non-isomorphic finite interpretations

(since the signature is finite, and there is a finite number of ways of defining the denotations of the

function and predicate symbols) and check if it is a model of the theory since, by hypothesis, it is
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Algorithm 5 — mincard algorithm
Input: ϕ, where ϕ is a quantifier-free satisfiable formula over Σ
Output: k, where k is the cardinality of the smallest T -model of ϕ

1: k = 0
2: while true do
3: k = k + 1
4: for all non-isomorphic T -models A s.t. |dom(A)| = k and ρ over A do
5: if A ρ  ϕ then return k
6: end for
7: end while

decidable to check if a finite interpretation is a model of the theory.

Considering the correctness of the procedure, if the algorithm returns m, for some T -model A, then

this means that for all models with smaller cardinality than m, none satisfied ϕ, from what follows that m

is the cardinality of the smallest model of ϕ.

Regarding the imposed condition on the theory, one might wonder whether this requirement is too

strong. We believe this is not the case, since, for example, all finitely axiomatized theories are included,

independently of the structure of the axioms (the theory is not imposed to be universal). However, it is

left open whether or not there exist stably finite theories in which checking if a finite interpretation is a

model is not decidable.

4.4 Complexity of the mincard function

In this section we relate the complexity of computing the mincard function to a colorability problem from

graph theory. Specifically, we provide a polynomial time reduction from an NP-complete problem to a

problem similar to computing the mincard function. For this, consider the following two problems.

k-cardinality problem: Given a set of satisfiable quantifier-free formulas Γ and k ∈ N, is there a model

of Γ with cardinality k?

k-colorability problem: Given a undirected finite graph G = 〈V,E〉, we say that G is k-colorable if

there exists a map χ : V → {1, . . . , k} that assigns different colours to adjacent vertices. This problem

is known to be in NP-complete, [5].

Proposition 4.20. Let G = 〈V,E〉 be a finite undirected graph. Define Γ as the set {u � v : u, v ∈

V and (u, v) ∈ E}. Then Γ is satisfied by a model of cardinality k iff G is k-colorable.

Proof. (→) Let A and ρ be the model and assignment that satisfy Γ. For each v ∈ vars(Γ), if ρ(v) =

ai ∈ dom(A) then set χ(v) = i. This way we have that for every u � v ∈ Γ, χ(u) 6= χ(v), making

χ : V → {1, . . . , k} a k-coloration of G.

(←) Let χ : V → {1, . . . , k} be a k-coloration of G. Define A = 〈{1, . . . , k}, ∅, ∅〉 and an assignment ρ

defined by ρ(v) = χ(v). Then A ρ  Γ.

Observation: Notice that the translation G 7→ Γ can be made polynomially on the size of G.

The result just proved implies that the k-cardinality problem is NP-hard since there is a polynomial-

time reduction from a k-colorability solution for a graph G to a k-cardinality solution for a set of formulas Γ
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induced by G and the k-colorability problem is NP-complete. We now only need to relate the k-cardinality

problem to computing the mincard function, which can be done quite directly.

Proposition 4.21. The problem of computing the mincard function for the theory of equality over the

empty signature is NP− hard.

Proof. We need to polynomially reduce the k-cardinality to computing the mincard function. Suppose we

want to check the k-cardinality problem for a set of literals Γ. Then, compute m = mincard(Γ). There are

two cases:

• m ≤ k and then, by the smoothness of the theory of equality, we obtain that Γ has a model with

cardinality k;

• m > k and then by the definition of mincard we have that there are no models of Γ with cardinality

k.

In this section we showed that computing the mincard function is an inherently hard problem to solve.

This was one of the problems that motivated the search for a notion similar to shininess (in the sense that

allowed combination with an arbitrary theory) but did not require the computation of the mincard function.

This will be the topic discussed in the next chapter, where we present the notion of polite theories.

4.5 Summary of the chapter

In this chapter we focused on the “migration” of the standard Nelson-Oppen method to different classes

of theories. The first method presented concerns the combination of satisfiability procedures for theories

with only finite models and with computable mincard functions. We proceeded to present the combination

procedure for an arbitrary and a shiny theory. This version of the Nelson-Oppen method is of huge

importance, since it was the first method that could be applied to the combination of an arbitrary theory

with a restricted theory. However, shiny theories require the computability of the mincard function. We

also present two different classes of theories under which the mincard function is computable. Also, the

theoretical complexity of this function is studied. The results in this chapter mainly follow the works of

Tinelli and Zarba [14] and of Ranise, Ringeissen and Zarba [9].
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5 – Polite theories

In this chapter we introduce the notions of polite and strongly polite theories. The politeness property

was introduced by Ranise, Ringeissen and Zarba in [9] as an attempt to solve some issues with the shini-

ness notion introduced in the previous chapter, namely the inherent hardness of computing the mincard

function. Polite theories must, however, be equipped with a witness function. Similarly to the shininess

notion, the combination theorem would be valid when considering the union of a polite theory and an

arbitrary one. However, in [6], Jovanović and Barrett showed that the politeness notion introduced in [9]

is not strong enough and allows witness functions that make the combination theorem false. Because of

this, they introduce a stronger notion of politeness, which we call strong politeness.

5.1 Polite theories

Definition 5.1 (Finite witnessability, [9]). We say that a theory T over a signature Σ is finitely witnessable

if there exists a computable function witness : QF(Σ) → QF(Σ) such that for every quantifier-free Σ-

formula ϕ

• ϕ and ∃�
w witness(ϕ) are T -equivalent, where �

w are the variables in vars(witness(ϕ)) which do not

occur in vars(ϕ).

• if witness(ϕ) is satisfiable in T then there exists a T -model I and assignment ρ such that I ρ 

witness(ϕ) and dom(A) = Jvars(witness(ϕ))Kρ.

If a function satisfies the above properties for a theory T to be finitely witnessable, we say that it is a

witness function for T .

Definition 5.2 (Politeness, [9]). A theory is polite whenever it is smooth and finitely witnessable.

Similarly to the extension of the Nelson-Oppen result for a shiny and arbitrary theory, Ranise, Ringeis-

sen and Zarba in [9] proposed the polite version of the Nelson-Oppen combination theorem. However,

as we will see in the sequel, this result does not hold with the politeness notion as is.

Proposal 5.3. Let Ti be a Σi-theory for i = 1, 2 such that Σ1 ∩ Σ2 = ∅. Let Γi be a conjunction of

Σi literals for i = 1, 2. Assume that T2 is polite and that witness is a witness function for T2. Then the

following statements are equivalent:

1. Γ1 ∧ Γ2 is T1 ⊕ T2 satisfiable.
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2. There exists an arrangement δVE such that Γ1 ∧ δVE is T1-satisfiable and witnessT2(Γ2) ∧ δVE is T2-

satisfiable, for V = vars(witness(Γ2)).

As mentioned previously, the politeness notion allows witness functions that contradict the combina-

tion theorem. The following example, from [6], will make this clear.

Example 5.1 ([6]). Consider two theories T1, T2 over the empty signature such that T1 is axiomatized

by ∀x∀y (x ∼= y) (meaning that if a model satisfies T1 then it has cardinality 1) and T2 axiomatized by

∃x∃y ¬(x ∼= y) (meaning that if a model satisfies T2 then it has cardinality at least 2). We are trying to

decide the satisfiability of ϕ := (x ∼= x) in the union of T1 and T2. Since the union of these theories has

no models that satisfy it, we conclude that ϕ will not be satisfiable.

Observe that T2 is clearly smooth – since its signature is empty, if a formula ϕ is satisfiable, then we

can simply add elements to the domain of this model to obtain the desired cardinality. We claim that

witness(ϕ) := ϕ ∧ w1
∼= w1 ∧ w2

∼= w2

where w1, w2 are fresh variables, is a witness function for T2. Let ϕ be a quantifier-free conjunction of

literals. Clearly, ϕ and ∃w1∃w2 witness(ϕ) are T2-equivalent.

For the second finite witnessability property, if ∃w1∃w2 ϕ∧w1
∼= w1 ∧w2

∼= w2 is satisfiable, we need

to provide a T -model I and assignment ρ such that I ρ  witness(ϕ) and dom(I) = Jvars(witness(ϕ))Kρ.

If ∃w1∃w2 witness(ϕ) is satisfiable, then there is a T -model B and an assignment σ such that B σ 

witness(ϕ). The desired interpretation structure and assignment must satisfy dom(I) = Jvars(witness(ϕ))Kρ.

With this in mind, define dom(I) as Jvars(witness(ϕ))Kσ and ρ = σ. The model I obviously satisfies

∃w1, w2 witness(ϕ) but it may happen that Jvars(witness(ϕ))Kσ contains only one element. However, if this

happens we can modify σ so that σ(w1) 6= σ(w2) while still preserving the satisfiability of ϕ. This way,

we guarantee that Jvars(witness(ϕ))Kσ has at least two elements and therefore I and ρ are such that

I ρ  witness(ϕ) and dom(I) = Jvars(witness(ϕ))Kρ. We therefore conclude that T2 is polite.

Now, let us apply the proposed combination theorem to decide the satisfiability of ϕ := (x ∼= x) in the

union of T1 and T2. Let Γ1 = true, Γ2 = ϕ and V = vars(witness(Γ2)) = {x,w1, w2}. We now would like

to check if there is an arrangement of δVE such that Γ1 ∧ δVE is T1-satisfiable and witness(Γ2) ∧ δVE is T2-

satisfiable. By letting δVE := x ∼= w1∧x ∼= w2∧w1
∼= w2, we have that Γ1∧ δVE is clearly T1-satisfiable and

witness(Γ2)∧ δVE is T2-satisfiable. By this combination method, we would conclude that ϕ is satisfiable in

T1 ⊕ T2, but this is absurd since this theory has no models.

5.2 Strongly polite theories

In light of the above counterexample, Jovanović and Barrett proposed a new politeness notion in [6],

which we call strong politeness in this thesis. As seen in the example, the problem with the previous

definition was that it allowed witness functions that were not strong enough. Due to this, Jovanović and

Barrett proposed the following definitions.

23



Definition 5.4 (Strong finite witnessability, [6]). We say that a theory T over a signature Σ is strongly

finitely witnessable if there exists a computable function s-witness : QF(Σ) → QF(Σ) such that for every

quantifier-free formula ϕ the following conditions hold:

• ϕ and ∃�
w s-witness(ϕ) are T -equivalent, where �

w are the variables in s-witness(ϕ) which do not

occur in ϕ;

• for every finite set of variables Y and relation E ⊆ Y 2, if s-witness(ϕ) ∧ δYE is satisfiable in T then

there exists a T -model I and an assignment ρ such that I ρ  s-witness(ϕ) ∧ δYE and dom(I) =

Jvars(s-witness(ϕ) ∧ δYE )Kρ.

A function satisfying the above properties is called a strong witness function for T .

Definition 5.5 (Strong politeness, [6]). A theory is strongly polite whenever it is smooth and strongly

finitely witnessable.

With this new definition, replacing the politeness definition by strong politeness in the theorem pro-

posal, we are now able to prove it.

Theorem 5.6 ([6]). Let Ti be a Σi-theory for i = 1, 2 such that Σ1 ∩Σ2 = ∅. Let Γi be a conjunction of Σi

literals for i = 1, 2. Assume that T2 strongly polite and that s-witness is a strong witness function for T2.

Then the following statements are equivalent:

1. Γ1 ∧ Γ2 is T1 ⊕ T2 satisfiable.

2. There exists an arrangement δVE such that Γ1 ∧ δVE is T1-satisfiable and s-witness(Γ2) ∧ δVE is T2-

satisfiable, for V = vars(s-witness(Γ2)).

Proof. (→) Assume that Γ1 ∧Γ2 is T1⊕T2 satisfiable. By the definition of strong politeness and s-witness

being a strong witness function for T2, we have that Γ1∧s-witness(Γ2) is also T1⊕T2-satisfiable. Hence, let

A be a T -model and ρ an assignment over A such that A ρ  Γ1 ∧ s-witness(Γ2). Then the arrangement

formula δVEρ induced by Eρ = {(x, y) : x, y ∈ V and ρ(x) = ρ(y)} is satisfied by A and ρ. Therefore, A|Σ1

is a T1 model of Γ1 ∧ δVEρ and A|Σ2 is a T2 model of s-witness(Γ2) ∧ δVEρ .

(←) Let A be a T1-model and ρ an assignment satisfying Γ1 ∧ δVE and B be a T2-model and an

assignment σ satisfying s-witness(Γ2) ∧ δVE . By the strong finite witnessability of T2, B may assumed to

be such that dom(B) = JV Kσ. From this, we have that

|dom(B)| = |JV KB σ| since dom(B) = JV Kσ

= |JV KA ρ| since A and B satisfy δVE

≤ |dom(A)| since JV KA ρ ⊆ dom(A).

By the smoothness of T2, let C be a T2-model and µ an assignment over C such that C µ  s-witness(Γ2)∧

δVE and |dom(C)| = |dom(A)|. Recapping, we have

• a T1-model A and an assignment ρ such that A ρ  Γ1 ∧ δVE ;
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• a T2-model C and an assignment µ such that C ρ  s-witness(Γ2) ∧ δVE ;

• |dom(C)| = |dom(A)|.

By theorem 3.6, we have that there is a T1 ⊕ T2-model D and an assignment τ such that C τ  Γ1 ∧

s-witness(Γ2) ∧ δVE . Since ∃�
w s-witness(Γ2) and Γ2 are T2-equivalent, D and τ satisfies Γ1 ∧ Γ2.

5.3 Summary of the chapter

In this chapter, following the works by Ranise, Ringeissen and Zarba [9] and Jovanović and Barrett [6],

we presented a Nelson-Oppen method to combine satisfiability procedures for an arbitrary theory and

a strongly polite theory, mainly motivated by the hardness of computing the mincard function for shiny

theories. However, strongly polite theories also require the computation of a s-witness function which

may also be as hard to compute as the mincard function. At this point, the study of the relation between

shiny, polite and strongly polite theories was needed to evaluate how different these classes of theories

are and how they relate to each other. This analysis was firstly performed by Ranise, Ringeissen and

Zarba [9] for shiny and polite theories. However, after the issue mentioned in Example 5.1 and the

creation of the strong politeness notion, the relation between the two politeness notions and between

strong politeness and shininess notions was not studied. This is the objective of the next chapter.
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6 – On the equivalence of shininess

and politeness

In this chapter we study the relationship between shininess and politeness, between shininess and

strong politeness as well as between the two politeness notions. The relationship between shininess

and politeness was first analyzed by Ranise, Ringeissen and Zarba in [9]. However, since Jovanović

and Barrett in [6] showed that the combination theorem for a polite and an arbitrary theory does not hold

(using a witness function), the original politeness notion was rewritten as the strong politeness notion

and somewhat forgotten. Because of this, the relationship between the two politeness notions has not

been studied. On the other hand, the study of the relationship between the strong politeness notion and

shininess was left as an open problem in [6]. We show that a shiny theory with a decidable quantifier-free

satisfiability problem is strongly polite. We also show that a strongly polite theory is a polite theory, and

using results from [9] and [14], that under each one of two sets of restrictions, the shininess, politeness

and strong politeness notions are equivalent (see Figure 6.1 for a global view of the results). From this,

we are able to devise a Nelson-Oppen procedure for the combination of a polite and an arbitrary theory

(using the fact that we can construct the mincard function and a strong witness function from a witness

function).

T is strongly
polite

by Proposition 6.5

by Proposition 6.4

T is polite

T is a universal
theory over a finite
signature and has

access to P

decidable to check if a
finite interpretation is

a T -model, with T
over finite signature

T is shiny

T is shiny and
has access to P

P is a decision
algorithm for the
satisfiability of
quantifier-free for-
mulas

by Propositions 6.1 and 6.3 by Proposition 6.1 and 6.2

Figure 6.1: Schematic representation of the results in the chapter
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6.1 Shininess and politeness

In this section we present results by Ranise, Ringeissen and Zarba from [9] relating the notions of

shininess and politeness. We begin by noting that a polite theory is always stably infinite.

Proposition 6.1. A polite theory is stably finite.

Proof. Let T be a polite theory, witness a witness function for T , and ϕ a T -satisfiable quantifier-free

formula. Hence witness(ϕ) is T -satisfiable and so there is a T -model A and an assignment ρ satisfying

witness(ϕ) with dom(A) = Jvars(witness(ϕ))Kρ. Since the number of variables in witness(ϕ) is finite we

have that A is a finite model of this formula, and so of ϕ. Hence T is stably finite.

Observe that given this result, in order to relate politeness with shininess, we are only left to prove

that the mincard function is computable. Capitalizing on results from Chapter 4, in particular Propositions

4.18 and 4.19, we can now prove that under the requirements of the mentioned propositions, a polite

theory is in fact shiny.

Proposition 6.2 ([9]). Let Σ be a finite signature and T a Σ-theory. Assume that given a finite Σ-

interpretation A, it is decidable to check whether A is a T -model. Then, if T is a polite Σ-theory then T

is shiny and Algorithm 5 computes the mincard function.

Proof. By Proposition 6.1, we obtain that T is stably finite. Hence, by Proposition 4.19, we have that the

mincard function is computed by Algorithm 5.

Observe that the conditions on the previous proposition are rather weak – for instance, if a theory

T is finitely axiomatized then it is decidable to check if a finite Σ-interpretation is indeed a T -model.

However, if it is not decidable to check whether a finite interpretation is a T -model, we will still be able

to construct the mincard function, provided that the theory T is universal. This proposition makes use of

a result by Tinelli and Zarba, see [14].

Proposition 6.3. Let Σ be a finite signature and T a universal Σ-theory with a decidable quantifier-

free satisfiability problem. If T is polite then it is shiny. Furthermore, Algorithm 4 computes its mincard

function.

Proof. By proposition 6.1 we obtain that T is stably finite. Hence, by Proposition 4.18, since T a uni-

versal Σ-theory with a decidable quantifier-free satisfiability problem and stably finite, we have that the

mincard function is computed by Algorithm 4.

The presented results in this section relate the politeness notion with shininess. We have shown

that under two different sets of restrictions a polite theory is shiny. Refer to Figure 6.2 for a schematic

representation of these results.
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T is polite

T is a universal
theory over a finite
signature and has

access to P

decidable to check if a
finite interpretation is

a T -model, with T
over finite signature

T is shiny

P is a decision algorithm for
the satisfiability of quantifier-
free formulas

by Propositions 6.1 and 6.3 by Proposition 6.1 and 6.2

Figure 6.2: Schematic representation of the results in the section

6.2 Shininess and strong politeness

In this section we investigate the relationship between shiny and strongly polite theories. We show that

a shiny theory with a decidable quantifier-free satisfiability problem is strongly polite. Furthermore we

provide two different sets of conditions under which a strongly polite theory is shiny. These results do

not contradict the results by Jovanović and Barrett in [6] stating that the polite theories allow witness

functions that disprove the combination theorem. We show that, given some conditions, a polite theory

is also strongly polite and what this means is that there is a way to transform a witness function into a

strong witness function. Moreover, given the constructive nature of the proofs we were able to design

such a procedure.

Proposition 6.4. A shiny theory with a decidable quantifier-free satisfiability problem is strongly polite.

Proof. Let T be a shiny theory over a signature Σ and P an algorithm for its quantifier-free satisfiability

problem. Since a shiny theory is by definition smooth, we are left to prove that T is strongly finitely

witnessable in order to conclude that T is strongly polite. In the sequel, given a T -satisfiable quantifier-

free formula ϕ and E ⊆ vars(ϕ)2 such that ϕ ∧ δvars(ϕ)
E is T -satisfiable, we denote by kϕE the result of

mincardT (ϕ ∧ δvars(ϕ)
E ).

Let

s-witness : QF(Σ)→ QF(Σ)

be the map such that s-witness(ϕ) = ϕ ∧ Ω, where Ω is

∧
E ⊆ vars(ϕ)2

P(ϕ∧δvars(ϕ)
E )=1

(
δ
vars(ϕ)
E → γkϕE

)

and γkϕE is
kϕE∧
i,j=1
i 6=j

wi � wj

and w1, . . . , wk are distinct variables not occurring in ϕ and in γkϕ
E′

for all E′ 6= E contained in vars(ϕ)2

with P(ϕ ∧ δvars(ϕ)
E′ ) = 1. It is immediate to conclude that s-witness is computable since:
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• there is a finite number of sets E contained in vars(ϕ)2 since vars(ϕ) is finite;

• formula δvars(ϕ)
E can be computed in a finite number of steps since E and vars(ϕ)2 are finite;

• the value kϕE is computable since: (i) the mincard function is computable; (ii) we can decide the

satisfiability of ϕ ∧ δvars(ϕ)
E with P; and (iii) T is stably finite;

• the formula γkϕE is computable in a finite number of steps because kϕE is a natural number.

Let ϕ be a quantifier free formula. We now show that ϕ and ∃�
w s-witness(ϕ) are T -equivalent. Let A

be a T -model and ρ an assignment over A. Assume that A ρ  ∃�
w s-witness(ϕ). Then A ρ  ϕ ∧ ∃�

w Ω,

and so A ρ  ϕ. For the other direction, assume A ρ  ϕ. We need to show that

A ρ  ∃�
w

∧
E ⊆ vars(ϕ)2

P(ϕ∧δvars(ϕ)
E )=1

(
δ
vars(ϕ)
E → γkϕE

)
.

Let ρ′ be an assignment �
w-equivalent to ρ (and so mapping all variables as ρ except possibly for variables

in �
w) such that:

• if the domain of A is infinite then ρ′(w1) 6= ρ′(w2) for every w1, w2 ∈
�
w;

• if the domain of A is finite then for each E ⊆ vars(ϕ)2 with P(ϕ ∧ δvars(ϕ)
E ) = 1:

– if kϕE ≤ |dom(A)| then ρ′(w1) 6= ρ′(w2) for every w1, w2 ∈ vars(γkϕE );

– otherwise, set ρ′(w1) = ρ′(w2) for every w1, w2 ∈ vars(γkϕE ).

Then

A ρ′ 
∧

E ⊆ vars(ϕ)2

P(ϕ∧δvars(ϕ)
E )=1

(
δ
vars(ϕ)
E → γkϕE

)
,

since for each E ⊆ vars(ϕ)2 with P(ϕ ∧ δvars(ϕ)
E ) = 1 either

• A ρ′ 1 δvars(ϕ)
E and so A ρ′  δ

vars(ϕ)
E → γkϕE ; or

• A ρ′  δ
vars(ϕ)
E and so A ρ′  ϕ ∧ δvars(ϕ)

E since A ρ  ϕ and ρ and ρ′ only differ in the interpretation

of the variables in �
w not occurring in ϕ. Since A with ρ′ constitute a model for ϕ ∧ δvars(ϕ)

E , the

cardinality of A has to be greater than or equal to kϕE = mincard(ϕ ∧ δvars(ϕ)
E ). Hence A ρ′  γkϕE

and so A ρ′  δ
vars(ϕ)
E → γkϕE .

We now show that given an equivalence relation E′ over a finite set of variables Y , if ϕ ∧ Ω ∧ δYE′ is

T -satisfiable, then there exists a T -model A and an assignment ρ that satisfies ϕ ∧ Ω ∧ δYE′ such that

dom(A) = Jvars(ϕ ∧ Ω ∧ δYE′)Kρ. So, let E′ be an equivalence relation over a finite set of variables Y

such that ϕ∧Ω∧ δYE′ is T -satisfiable. Let p be a natural number and Y1, . . . , Yp be finite pairwise disjoint

non-empty sets of variables such that

• Y = Y1 ∪ . . . ∪ Yp; and
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• for each i = 1, . . . , p, and y ∈ Yi,

– (y ∼= x) and (x ∼= y) are in δYE′ for each x ∈ Yi;

– ¬(y ∼= x) and ¬(x ∼= y) are in δYE′ for each x ∈ Y \ Yi;

and observe that the variables in Y can be either in vars(ϕ) or in vars(γkE ) for some E or not in vars(ϕ∧Ω).

Let A be a T -model and ρ an assignment over A that satisfy

ϕ ∧ Ω ∧ δYE′

and let δvars(ϕ)
Eρ

be the arrangement formula induced by Eρ = {(x, y) : x, y ∈ vars(ϕ) and ρ(x) = ρ(y)}.

Then, obviously, δvars(ϕ)
Eρ

is satisfied by A and ρ. Moreover, no other formula in {δvars(ϕ)
E : E ⊆

vars(ϕ)2 and P(ϕ∧ δvars(ϕ)
E ) = 1} is satisfied by A and ρ. Since ϕ∧ δvars(ϕ)

Eρ
is satisfiable we have that the

cardinality of its smallest model is kϕEρ = mincard(ϕ∧ δvars(ϕ)
Eρ

). Let K = max{kϕEρ , p}. By the smoothness

of T and since ϕ ∧ δvars(ϕ)
Eρ

is T -satisfiable, let B be a T -model and σ be an assignment over B such that

B σ  ϕ ∧ δvars(ϕ)
Eρ

and |dom(B)| = K,

and let d1, . . . , dp be distinct elements of dom(B) such that

di = σ(y) if Yi ∩ vars(ϕ) 6= ∅ and y ∈ Yi ∩ vars(ϕ)

for i = 1, . . . , p, and assuming that the variables of γkϕEρ are w1 . . . , wkϕEρ
let e1, . . . , ekϕEρ

be distinct

elements of dom(B) such that

ej = di if wj ∈ Yi

for j = 1, . . . , kϕEρ . Observe that distinct variables in w1 . . . , wkϕEρ
are in distinct sets in Y1, . . . , Yp since

A ρ  δYE′ and A ρ  γkϕEρ
taking into account that A ρ  δ

vars(ϕ)
Eρ

and A ρ  Ω. Let σ′ be an assignment

(
�
w ∪ (Y \ vars(ϕ)))-equivalent to σ such that

σ′ = λx.


di if x ∈ Yi for some i ∈ {1, . . . , p}

ej if x /∈ Y and x is wj with wj ∈ vars(γkEρ )

σ(x) if x /∈ Y and x /∈ vars(γkEρ )

for each x ∈ �
w ∪ (Y \ vars(ϕ)). Let us now prove that B σ′  ϕ ∧ Ω ∧ δYE′ :

(a) B σ′  ϕ. This follows immediately taking into account that B σ  ϕ and that σ and σ′ may only differ

in variables in �
w ∪ (Y \ vars(ϕ)) not occurring in ϕ;

(b) B σ′  Ω. Observe that B σ′  ϕ∧δvars(ϕ)
Eρ

since σ and σ′ may only differ in variables inXγ∪(Y \vars(ϕ))

not occurring in ϕ ∧ δvars(ϕ)
Eρ

. Moreover B σ′  γkEρ and so B σ′  δ
vars(ϕ)
Eρ

→ γkEρ . Since B σ′  δ
vars(ϕ)
Eρ

,

we have that B σ′ 1 δ
vars(ϕ)
E for all E 6= Eρ with E ⊆ vars(ϕ)2. Hence B σ′  δ

vars(ϕ)
E → γkE for all

E ⊆ vars(ϕ)2 and so B σ′  Ω;
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(c) B σ′  δYE′ . We only need to verify that B and σ′ satisfy the equalities and inequalities induced by E′.

This holds since by construction, it assigns the same value to variables in the same Yi set, and assigns

different values to variables in different sets.

Finally it remains to show that dom(B) = Jvars(ϕ ∧ Ω ∧ δYE′)Kσ
′
:

(⊆): Let d ∈ dom(B). Then d is either a di for some i = 1, . . . , p or an ej for some j = 1, . . . , kEρ . In the

case that d = di then we have that d = σ′(x) for all x ∈ Yi. On the other hand, if d = ej then d = σ′(wj)

for the wj variable in vars(γkEρ );

(⊇): From the construction described above we show for every x ∈ vars(ϕ∧Ω∧ δYE′) how to define σ′(x).

Combining the previous items, we conclude that a shiny theory is strongly finitely witnessable, hence

strongly polite.

We now prove that a strongly finitely witnessable theory is always finitely witnessable.

Proposition 6.5. Each strongly finitely witnessable theory is finitely witnessable.

Proof. Let T be a strongly finitely witnessable Σ-theory and s-witness a strong witness function for T .

We now show that s-witness is also a witness for T . The first condition follows immediately. With respect

to the second condition assume that s-witness(ϕ) is satisfiable in T . Let E and Y be empty sets. Then δYE
is true and so s-witness(ϕ) ∧ δYE is satisfiable in T . Hence the thesis follows immediately by the second

condition of the definition of strong finite witnessability since s-witness is a strong witness function for

T .

Combining the previous results, we proved that the equivalence between strong politeness, shininess

and politeness holds, assuming one out of two different sets of conditions on the theory.

A consequence of these results is that we are now able to design a procedure to obtain a strong

witness function starting from a witness function (which is easier to find than a strong witness function),

provided that the theory has a decidable quantifier-free satisfiability problem and is either universal or

it is decidable to check if a finite interpretation is a model for it. This implies that if a polite theory

satisfies one of these requirements, then we are able to design a Nelson-Oppen combination procedure

to decide the satisfiability of quantifier-free formulas in its union with an arbitrary theory. This result

seems, at first, contradictory with Example 5.1, where it was shown that the politeness notion allowed

witness functions that made the combination theorem for a polite and an arbitrary theory false. However,

this counterexample only shows that it is not possible to use the Nelson-Oppen combination procedure

with witness functions and what we show is that from a witness function we are able to construct a

strong witness function and then use the combination procedures seen in Chapter 5. For this, consider

Algorithms 4, 5 and 6.

Theorem 6.6. Let Σ be a finite signature and T be a polite Σ-theory with a decidable quantifier-free sat-

isfiability problem. Assume either that T is universal or that it is decidable to check if a finite interpretation

is a T -model. Then, Algorithm 6 computes a strong witness function for T .

Proof. We begin by computing the mincard function. If T is universal, by Proposition 6.3 we have that the

mincard function is computable and that Algorithm 4 is an algorithm for it. In the case that it is decidable
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Algorithm 6 — algorithm for a strong witness function s-witness for a theory T
Input: ϕ, where ϕ is a quantifier-free satisfiable formula
Output: s-witness(ϕ)
Requires: access to an algorithm P that decides satisfiability of quantifier-free formulas, and to the
function mincard for T

1: for E ⊆ vars(ϕ)2

2: δ
vars(ϕ)
E = ε

3: for all pairs (x, y) ∈ vars(ϕ)2

4: if (x, y) ∈ E
5: then δ

vars(ϕ)
E = δ

vars(ϕ)
E ∧ (x ∼= y)

6: else δ
vars(ϕ)
E = δ

vars(ϕ)
E ∧ ¬(x ∼= y)

7: end if
8: end for
9: if P(ϕ ∧ δvars(ϕ)

E ) == 1

10: then kE = mincard(ϕ ∧ δvars(ϕ)
E )

11: γkE = ε
12: for i, j = 1, i 6= j to kE
13: γkE = γkE ∧ ¬(xi ∼= xj)
14: end for
15: ϕ = ϕ ∧ (δ

vars(ϕ)
E → γkE )

16: end if
17: end for
18: return ϕ

to check if a finite Σ-interpretation is a T -model, then by Proposition 4.19 we have that the mincard

function is computed by Algorithm 5. Therefore, T is shiny. It is immediate to see that Algorithm 6

computes the function shown in the proof of Proposition 6.4 to be a strong witness function for T , and

so the result follows.

From the previous result, we developed a mechanism to construct the mincard function and a strong

witness function from a witness function, provided the theory satisfies one of the two sets of restrictions.

In other words, we showed that if a polite theory over a finite signature is either universal or it is decidable

to check whether a finite interpretation is a model of the theory then the theory is both shiny and strongly

polite. This way, since in Chapter 4 we provided a combination theorem for a shiny and an arbitrary

theory and in Chapter 5 we provided a combination theorem for a strongly polite and an arbitrary theory,

we can use these combinations method to combine a polite theory and an arbitrary theory, provided the

polite theory satisfies one of the described conditions.

Theorem 6.7. Let Σ2 be a finite signature and Ti a Σi-theory with a decidable quantifier-free satisfiability

problem, for i = 1, 2, such that Σ1 ∩ Σ2 = ∅. Assume that

• T2 is smooth;

• T2 has a witness function;

• either T2 is universal or checking if a finite Σ2-interpretation is a model of T2 is decidable.

Then, the function mincardT2 is computable and there is a computable strong witness function, s-witnessT2 ,

for T2, such that the following statements are equivalent:
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1. Γ1 ∧ Γ2 is T1 ⊕ T2 satisfiable;

2. there exists E ⊆ Y 2, where Y is vars(Γ1) ∩ vars(Γ2), such that

• Γ1 ∧ δYE ∧ γκ is T1-satisfiable, where κ is mincardT2(Γ2 ∧ δYE );

• Γ2 ∧ δYE is T2-satisfiable;

3. there exists E ⊆ Y 2, where Y is vars(s-witness(Γ2)), such that

• Γ1 ∧ δYE is T1-satisfiable;

• s-witnessT2(Γ2) ∧ δYE is T2-satisfiable;

for every conjunction Γ1 of Σ1-literals and Γ2 of Σ2-literals.

Proof. By theorem 6.6, the functions mincardT2 and s-witnessT2 are computable. Furthermore, from

Proposition 6.1 we obtain that T2 is stably finite. We conclude that T2 is both shiny and strongly polite.

The equivalence between (1) and (2) follows from the combination Theorem 4.10 and the equivalence

between (1) and (3) follows from the combination Theorem 5.6.

We now exemplify an application of the previous theorem, showing how it could be applied to solve

the counterexample provided by Example 5.1.

Example 6.1. Recall from Example 5.1 the theories T1 and T2 over the empty signature such that T1

is axiomatized by ∀x∀y (x ∼= y) and T2 is axiomatized by ∃x∃y ¬(x ∼= y). Hence, every model of T1

has cardinality at most one and every model of T2 has cardinality at least two. Let ϕ denote the formula

(x ∼= x).

Also recall, from Example 5.1 that theory T2 is smooth and that

witnessT2(ϕ) := ϕ ∧ (w1
∼= w1) ∧ (w2

∼= w2)

is a witness function for T2. Hence this condition for the application of Theorem 6.7 is fullfilled. Taking

into account that mincardT2(ϕ) = 2, then by Algorithm 6,

s-witnessT2(ϕ) = ϕ ∧ (x ∼= x)→ γ2

= ϕ ∧ (x ∼= x)→ ¬(z1
∼= z2)

= (x ∼= x) ∧ ¬(z1
∼= z2).

Let Γ1 be the formula true, Γ2 the formula ϕ and Y the set vars(s-witness(Γ2)) i.e. {x, z1, z2}. We now

would like to check if there is an arrangement of δYE such that Γ1∧δYE is T1-satisfiable and s-witness(Γ2)∧

δYE is T2-satisfiable. Note that the only arrangement satisfied in T1 is the one induced byE = {(x, z1), (x, z2), (z1, z2)}

since all others would require the interpretation to have cardinality greater than one. However, s-witness(Γ2)∧

δYE is clearly not satisfiable. Hence, by Theorem 6.7, we conclude that ϕ is not satisfiable in T1 ⊕ T2. In

this simple case it is no difficult to see that this was the expected conclusion since there are no models

that satisfy the theory resulting from the union of T1 and T2.
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Observe the importance of Algorithm 6 to define in a computable way the strong witness function

for T2.

6.3 Summary of the chapter

In this chapter we studied the relationship between shininess and politeness, between shininess and

strong politeness as well as between the two politeness notions. The relationship between shininess and

politeness was first analyzed by Ranise, Ringeissen and Zarba in [9]. However, after the introduction of

the strong politeness notion, the relationship between the two politeness notions had not been studied.

On the other hand, the study of the relationship between the strong politeness notion and shininess was

left as an open problem in [6]. In this chapter we show that a shiny theory with a decidable quantifier-free

satisfiability problem is strongly polite. We also show that a strongly polite theory is a polite theory, and

using results from [9] and [14], that under each one of two sets of restrictions, the shininess, politeness

and strong politeness notions are equivalent (see Figure 6.1 for a global view of the results). From this,

we are able to devise a Nelson-Oppen procedure for the combination of a polite and an arbitrary theory,

provided the polite theory satisfies some conditions.
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7 – Conclusion

The first and most well-known method for the combination of satisfiability procedures is due to Nelson

and Oppen, [7]. In their paper, the authors provide a combination method to decide the satisfiability of

quantifier-free formulas in the union of two theories, provided that both theories have their own procedure

for deciding the satisfiability problem of quantifier-free formulas, have disjoint signatures and are stably

infinite. At that time, this result had great impact on the area of automated reasoning since it provided a

general combination method, which at the time was made on a case by case basis such as in the work of

Suzuki and Jefferson [11] on the combination of the theory of arrays and Presburger arithmetic. However,

the class of theories to which this method applied seemed too restrictive and several extensions or

“migrations” of the method were proposed, namely the extension to shiny theories in [14], to polite

theories in [9] and to strongly polite theories in [6]. In this document we presented these combination

methods in a self-contained and detailed manner. Furthermore, we answered a question left open by

Jovanović and Barrett in [6], and obtained results on the relationship between shiny and strongly polite

theories, as well as presenting known results on the relationship between shiny and polite theories. With

this set of results, we were able to devise a Nelson-Oppen procedure for the combination of a polite and

an arbitrary theory by constructing the mincard function and a strong witness function from a witness

function.

7.1 Directions for further research

In this document, we focused on extending the original Nelson-Oppen method to theories that were not

stably infinite. However, the less studied requirement of the Nelson-Oppen method, theories having

disjoint signatures, is also of great interest and recently has had surprising applications in other fields of

logic, in particular on the union of logics, specifically on the fusion of modal logics [1].

Also, we leave as future work the generalization to the many-sorted case of the proposition stating

that a shiny theory is strongly polite.
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